ITOS Configuration Monitor Users’ Guide

Integrated Test & Operations System
5 October 2006

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Chapter 1: Overview 1

1 Overview

The configuration monitor allows you to do two things: First, you can assign to a
telemetry mnemonic the value of a STOL-language expression. Second, you can execute any
STOL directive if a STOL-language expression evaluates to a non-zero ("true") value. In this
document, we’ll call the former an equation, and the latter a condition.

"What’s it for?" you ask. Well...

Suppose you’re telemetering current and voltage from the spacecraft, but need to use
power on displays and in STOL procs. You can define a mnemonic for power and use an
equation to calculate it.

Suppose you wanted to capture some data when a certain on-board device was on. You
could use a condition to detect when the device comes on, and to start a sequential print
to a file. Another condition could detect when the device goes off, and stop the print.

Finally, suppose you wanted to represent the health of an on-board subsystem with a
single, good/bad indicator; or display one of several states a subsystem may be in based on
several variables. A combination of equations and conditions might be just the thing.

We consider this a preliminary release of this new capability, and we are open to sug-
gestions from you regarding how we might improve on this initial offering. We have several
ideas of our own, which we’ll ask you about directly at appropriate points in this document.

Let’s jump right into an example. Suppose I put the following two lines in a text file
called ‘buspwr.cfg”

pbuspwr = (pbuscurr * pbusvolts)
if (pbuspwr .gt. 35.2) then start someproc

Then I execute the STOL directive cfgmon buspwr to start the configuration monitor
processing that file.

The configuration monitor arranges to get a copy of the value of the mnemonics
pbuscurr, pbusvolts, and pbuspwr whenever each is assigned a different value from its
previous value. When it gets new a value for pbuscurr and pbusvolts, it multiplies them
together and assigns the results to the mnemonic pbuspwr. The new pbuspwr value is
limit-checked just as if it had been received from the spacecraft.

When pbuspwr is updated, the new value is compared against 35.2, according to the
condition on the second line. If the mnemonic’s value is greater, the configuration monitor
sends the directive start someproc to the STOL interpreter to start the STOL proc called
‘someproc’.

January 14 1997

Chapter 2: Equations 2

2 Equations

Configuration monitor equations have the form:
mnemonic = STOL expression

where the mnemonic is a telemetry mnemonic, and the STOL expression is a mathematical
or logical sTOL-language expression containing at least one telemetry mnemonic.

The newline character at the end of the STOL expression ends the equation. Newlines
contained in a parenthesized expression are ignored, so we recommend that you always
parenthesize the right-hand side of the equation. Newlines on either side of the equals sign
also are ignored.

So, for example, the following equations will be interpreted correctly:

mymnemonic = hismnemonic * hermnemonic + tan(theirmmemonic)
mymnemonic = (hismnemonic * hermnemonic + tan(theirmnemonic))
mymnemonic
= hismnemonic * hermnemonic + tan(theirmnemonic)
mymnemonic = (hismnemonic
* hermnemonic + tan(theirmnemonic))
mymnemonic = hismnemonic * hermnemonic + \
tan(theirmnemonic)

mymnemonic
(hismnemonic * hermnemonic + tan(theirmnemonic))

whereas this next set of equations will not parse correctly:

mymnemonic = hismnemonic * hermnemonic +
tan(theirmnemonic)

January 14 1997

Chapter 3: Equations in Decom 3

3 Equations in Decom

ITOS users can create a configuration file that lists telemetry mnemonics whose values
are the result of equations. These equations may contain other mnemonics within the
equation. These equations are evaluated at the exact moment the packets are decommed.

The configuration file identified by GBL_PSEUDO_TLM_FILE contains the definitions of the
equations and the mnemonics they are applied to. If this global mnemonic contains just
the file name then the file must reside in the directory that you start ITOS in. Otherwise
set this global to the explicit path of the file.

The format for each line in the configuration file is:

appid mnemonic = expression
Where:

appid = Any valid appid defined in the database. Mnemonics in the equation should
occur in this packet since the equation will be evaluated when this packet
is decommed.
mnemonic = Any mnemonic defined in the database that is NOT part of a packet. Should b
a pseudo mnemonic created specifically for this assignment.
equation = Any valid STOL expression that can contain any mnemonic defined in the data

Example of configuration file follows:
1 my_mnemonic_1 = .0835 + (pktl_mneml - pktl_mnem2) * 2047
1 my_mnemonic_2 = 2.345 + 2045/(pkl_mnem3 - my_mnemonic_1) * 3.5
3 my_mnemonic_3 = 33.34 + (pkt3_mneml - pkt3_mnem2) * 2047
3 my_mnemonic_4 = 2.345 + 2045/(pk3_mnem3 - my_mnemonic_3) * 3.5
Notes: At the start of acquiring telemetry there will be a message from the tImClient
application noting the configuration file that was found. If no file is found there will be a
warning message but telemetry decom will continue.

January 14 1997

Chapter 4: Conditions 4

4 Conditions

Configuration monitor conditions have the form:
if STOL expression then action

where the STOL expression is a logical or mathematical STOL-language expression and
action is a STOL directive or the configuration monitor’s special alert action, discussed
below.

If the action begins with the word alert, the rest of the statement is sent out as an
event message, with event type CFG_ALERT.

The newline character at the end of the action ends the condition statment. Newline
characters in the action may be escaped with a backslash (\), and they are ignored inside
a quoted string. Newlines anywhere between the if and the beginning of the action are
ignored.

For example, the following conditions will be parsed correctly:

if (mymnemonic .gt. yourmnemonic) then alert me

if mymnemonic .gt. yourmnemonic then alert me

if

mymnemonic

.gt.

yourmnemonic

then

alert me

if (mymnemonic .gt. yourmnemonic) then alert \
me

but this final example will not parse correctly:

if mymnemonic .gt. yourmnemonic) then alert
me

We anticipate you will desire the ability to print formatted alert messages containing
mnemonic values. One way we plan to implement this is by adding a new STOL directive
and /or function which will issue event messages and using the existing STOL format function
to format it. Alternatively, or in addition, we might implement a page-definition-style
format string for displaying data.

We also anticipate the need to handle an action which consists only of an equation.
While it is acceptable to simply pass the equation to the STOL interpreter like any other
action, it might be preferrable to handle the equation right in the configuration monitor.

January 14 1997

Chapter 5: Options and Comments 5

5 Options and Comments

Comments in configuration monitor files begin with the pound sign (‘#’) or semicolon
(‘;’) and continue to the end of the line.

Each condition or equation may be preceded by one or more options enclosed in curly
brackets, and separated by commas. As an example, here is all of the available options set
to their default settings:

{ count = 1, tagtype = changed, trigger = norm, partial = fill }

These options control how the configuration monitor obtains and handles the data it
needs to evaluate the STOL expressions.

Options are applied to all subsequent statements in a definition file. If you set some
options at the beginning of the file and don’t set them again in that file, the initial option
settings apply to every line in the file.

For example, if a configuration file consists of:

{ count = 1 } if (gbl_tlmrate .gt. 2.25e6) then alert "high rate"
if (gbl_tm_frmrate .gt. gbl_tlmrate) then alert "nonsense rate"
{ count = 2 } if (gbl_tlmrate .eq. 0) then alert "telemetry stopped"

The count option is set to one applies to the first two entries, and it is set to two for
the third entry. Any subsequent entry would have count set to two, unless it specified a
different count, which then in turn would apply to all entries following it, etc.

The specifics of each options is dealt with in the following sections.

5.1 Count

The count option applies only to conditions. It gives the number of consecutive times
the given expression must evaluate non-zero ("true"), before the associated action is taken.
The default value is one. This option may be used to filter out spurious or transient results.

The configuration monitor keeps a count of the number of times consecutively that the
expression is evaluates to a non-zero value ("true"). Whenever the expression evaluates to
zero ("false"), the consecutive-true counter is reset to zero.

Note that the action is take only when the consecutive-true counter is equal to the value
stored by the count option. This means that the action is taken only once, as long as the
condition remains true. (Please let us know if you require an option such that the action
is taken every time the expression evaluates to true, even if the last evaluation also gave a
true result.)

Note also that this option may interact with the tagtype option. If the condition is
not triggering on a timed interval, and if the tagtype is set to the value changed (the
default), only new values different from the current value for each mnemonic are sent to
the configuration monitor. So, as long as the right-hand-side values are unchanged, the
expression will not be re-evaluated. In this state, if count is greater than 1, it may not be
reached even though the expression would evaluate true many times if the tagtype were
set.

January 14 1997

Chapter 5: Options and Comments 6

5.2 Tagtype

The tagtype options controls when new values are sent to the configuration monitor
when the trigger option is not time. The tagtype option may be set to changed, the
default, or to set.

The changed tagtype indicates that the configuration monitor should be sent a
mnemonic’s value only when it differ from its current value. The set tagtype indicates
that the configuration monitor should be sent a mnemonic’s value whenever it is updated,
usually by unpacking telemetry packets.

You also can use the tagtypes flag_changed and flag_set to receive values when the
mnemonic flags change or are updated, respectively. Mnemonic flags indicate things such
as limit violations, questionable quality, and static data. One of these must be given if you
use the isstatic function in an expression, since the static flag is set when the data is not
updating!

Multiple values are specified using the C-language OR operator (|), as in the following
example.

tagtype = changed | flag_changed

This option interacts with the count option. See Section 5.1 [Count], page 5.

5.3 Trigger

The trigger option controls when the STOL expression is evaluated. Triggering may
be data driven, or may occur on a timed interval.

To evaluate equation or condition expressions on a timed interval, set the trigger option
to an integer value. This is the number of milliseconds between evaluations.

Data-driven evaluation is controlled by setting the trigger option to one or more of the
following values:

norm Evaluate the expression when values for all mnemonics in it have been up-
dated since the last evaluation, or when a second update occurs on at least one
mnemonic value.

eom Evaluate the expression whenever we have received at least one updated value.
The evaluation is done after a telemetry packet has been fully unpacked, so any
expression mnemonics contained in the packet will have been updated.

pktxxx Evaluate the expression whenever the telemetry packet with application ID xxx
has been unpacked, provided at least one mnemonic value has been updated
since the last expression evaluation. This option has not yet been implemented.

Multiple values are specified using the C-language OR operator (|), as in the following
example.
trigger = norm | eom

We anticipate adding a mnemonic triggering option similar to the pktxxx triggering
option. In this scenario, the expression would be evaluated whenever a value is received for
a given mnemonic.

January 14 1997

Chapter 5: Options and Comments 7

5.4 Partial

The partial option controls what the configuration monitor does when it goes to eval-
uate an expression and finds it has not received updated values for all of the mnemonics in
the expression. If it is set to fill, missing values are read from the ITOS system’s Current
Value Table (CVT). If partial is set to discard, the expression will not be evaluated if
any mnemonic values have not been updated.

Note that this option is meaningless if triggering is on a timed interval. In this mode,
all values are read from the CVT.

January 14 1997

Chapter 6: Debugging 8

6 Debugging

The configuration monitor definition parser doesn’t always produce terribly helpful error
messages. If you get stuck, you can embed a debug statement in the definition file. You’ll
probably still be stuck, because it takes a developer to interpret the debug messages, but
at least you have a chance.

Just put the word "debug" on a line by itself (outside of any equation or configuration
or option set), and you’ll get a ton of inscrutable debugging messages. Each occurrence of
the debug statement toggles debugging on or off.

For example, the configuration:

debug

psbatpwr = (psbatcurr * psbatvolt)

debug

if (psbatpwr .gt. 35.2) then start someproc

produces the following output, which consists mainly of debugging messages for the

‘psbatpwr’ equation:

state stack now O

Entering state 5

Reducing via rule 5 (line 133), debugcmd -> entry

state stack now 0O

Entering state 4

Reducing via rule 1 (line 127), entry -> definition

state stack now 0O

Entering state 3

Reading a token: --accepting rule at line 159 ("

ll)

--accepting rule at line 143 ("psbatpwr")

Next token is 259 (TOK_WORD)

Reducing via rule 17 (line 270), -> options

state stack now 0 3

Entering state 8

Next token is 259 (TOK_WORD)

Shifting token 259 (TOK_WORD), Entering state 12

Reading a token: --accepting rule at line 69 (" ")

--accepting rule at line 133 ("=")

Next token is 61 (’=?)

Shifting token 61 (’=’), Entering state 24

Reading a token: --accepting rule at line 69 (" ")

--accepting rule at line 209 (" (")

--accepting rule at line 246 ("psbatcurr")

--accepting rule at line 69 (" ")

--accepting rule at line 246 ("*")

--accepting rule at line 69 (" ")

--accepting rule at line 246 ("psbatvolt")

--accepting rule at line 217 (")")

Next token is 261 (TOK_SX)

January 14 1997

Chapter 6: Debugging 9

Shifting token 261 (TOK_SX), Entering state 32

Reducing via rule 7 (line 141), options TOK_WORD ’=’ TOK_SX -> equation
state stack now 0 3

Entering state 6

Reducing via rule 3 (line 131), equation -> entry

state stack now 0 3

Entering state 10

Reducing via rule 2 (line 128), definition entry -> definition
state stack now O

Entering state 3

Reading a token: --accepting rule at line 159 (@

n)

--accepting rule at line 81 ("debug")

Next token is 268 (TOK_DEBUG)

Shifting token 268 (TOK_DEBUG), Entering state 1

Reducing via rule 6 (line 136), TOK_DEBUG -> debugcmd

We'll try to provide better debugging tools in future releases.

January 14 1997

Chapter 7. CFGMON Directive 10

7 CFGMON Directive

We're calling a file containing a set of equations and conditions a configuration file; the
collection of equations and conditions itself, a configuration. Configuration file names must
end in the suffix ‘.cfg’. The name of a configuration is the name of it’s file, without the
‘.cfg’ suffix.

The simple STOL directive cfgmon is used to start and stop processing of configu-
rations. Enter cfgmon myconfig to start the configuration monitor running on the file
‘myconfig.cfg’.

The global mnemonic gbl_cfgmonpath should be set to a colon-separated list of direc-
tories in which the configuration monitor should search to find a configuration file. This is
just like the gbl_procpath or gbl_pagepath mnemonics, only it’s for configuration files.

To stop processing a configuration called myconfig, enter cfgmon clear myconfig.

The special page called control can be used to see what configurations are active.

January 14 1997

Chapter 8: Examples 11

8 Examples

We want to monitor the health of a subsystem and calculate some derived telemetry
values for it, but only when the subsystem is turned on. So we run a configuration containing
the line:

if (p@mysubsysrelay .eq. "on") then cfgmon mysubsys
The file ‘mysubsys.cfg’ then might contain:

mypower = (mysubsyscurr * mysubsysvolt)

mytemp = ((mysubsystempl + mysubsystemp2 + mysubsystemp3) / 3)

mysomething = (log(sin(mysubsysanl) * cos(mysubsysan2)))

if (p@mysubsysswitchl .eq. "off" .and. pOmysubsysswitch2 .eq. "off")
then mystate = 0

if (p@mysubsysswitchl .eq. "on" .and. p@mysubsysswitch2 .eq. "off")
then mystate = 1

if (pOmysubsysswitchl .eq. "off" .and. p@mysubsysswitch2 .eq. "on")
then mystate = 2

if (pOmysubsysswitchl .eq. "on" .and. pOmysubsysswitch2 .eq. "on")
then mystate = 3

if (pOmysubsysrelay .eq. "off") then cfgmon clear mysubsys

January 14 1997

Chapter 9: Notes and Bugs 12

9 Notes and Bugs

e When equations are not being updated on a timed interval, the mnemonic on the left-
hand side must not appear in the expression on the right-hand side. Notice that this
may be difficult to see:

mymnemonic = yourmnemonic * 2
yourmnemonic = sin(theirmmnemonic) / 2
theirmnemonic = sin(mymnemonic) + cos(hismnemonic)

Here, mymnemonic depends on yourmnemonic which depends on theirmnemonic which
depends on mymnemonic. It’s a loop! Since the expressions are evaluated when the
mnemonic values are updated, this sort of loop results in rapid-as-possible re-evaluation
of the expressions, and a nasty load on the system.

In a future release, we will try to find these loops and disallow them, but for now, we
have to rely on you to do it for us.

e The configuration monitor is not very helpful when it comes to reporting errors in the
configuration file. This will improve in future releases.

January 14 1997

Index

Index

(Index is nonexistent)

January 14 1997

13

Table of Contents

1 OVervVIeW.....iooieieieeeeenenneeenaoanas 1
2 Equations.............iiiiiiiiiiiiinnann. 2
3 Equationsin Decom 3
4 Conditionscoiiiieiieeieennnnnns 4
5 Options and Comments 5

5.1 Count ..ot 5

5.2 Tagtypeo e 6

5.3 TrIgger ..ot 6

5.4 Partial 7
6 Debuggingcciiiiiiiiiiiiiiaa.. 8
7 CFGMON Directiveccovvevienn.. 10
8 Examples i, 11
9 Notesand Bugs 12
Indexoiiiiiiiiiii ittt 13

January 14 1997

